Eric
Abstract:Hierarchical Imitation Learning is a powerful paradigm for acquiring complex robot behaviors from demonstrations. A central challenge, however, lies in discovering reusable skills from long-horizon, multi-task offline data, especially when the data lacks explicit rewards or subtask annotations. In this work, we introduce LOKI, a three-stage end-to-end learning framework designed for offline skill discovery and hierarchical imitation. The framework commences with a two-stage, weakly supervised skill discovery process: Stage one performs coarse, task-aware macro-segmentation by employing an alignment-enforced Vector Quantized VAE guided by weak task labels. Stage two then refines these segments at a micro-level using a self-supervised sequential model, followed by an iterative clustering process to consolidate skill boundaries. The third stage then leverages these precise boundaries to construct a hierarchical policy within an option-based framework-complete with a learned termination condition beta for explicit skill switching. LOKI achieves high success rates on the challenging D4RL Kitchen benchmark and outperforms standard HIL baselines. Furthermore, we demonstrate that the discovered skills are semantically meaningful, aligning with human intuition, and exhibit compositionality by successfully sequencing them to solve a novel, unseen task.
Abstract:Continual Reinforcement Learning (CRL) aims to develop lifelong learning agents to continuously acquire knowledge across diverse tasks while mitigating catastrophic forgetting. This requires efficiently managing the stability-plasticity dilemma and leveraging prior experience to rapidly generalize to novel tasks. While various enhancement strategies for both aspects have been proposed, achieving scalable performance by directly applying RL to sequential task streams remains challenging. In this paper, we propose a novel teacher-student framework that decouples CRL into two independent processes: training single-task teacher models through distributed RL and continually distilling them into a central generalist model. This design is motivated by the observation that RL excels at solving single tasks, while policy distillation -- a relatively stable supervised learning process -- is well aligned with large foundation models and multi-task learning. Moreover, a mixture-of-experts (MoE) architecture and a replay-based approach are employed to enhance the plasticity and stability of the continual policy distillation process. Extensive experiments on the Meta-World benchmark demonstrate that our framework enables efficient continual RL, recovering over 85% of teacher performance while constraining task-wise forgetting to within 10%.
Abstract:Designing effective reward functions remains a central challenge in reinforcement learning, especially in multi-objective environments. In this work, we propose Multi-Objective Reward Shaping with Exploration (MORSE), a general framework that automatically combines multiple human-designed heuristic rewards into a unified reward function. MORSE formulates the shaping process as a bi-level optimization problem: the inner loop trains a policy to maximize the current shaped reward, while the outer loop updates the reward function to optimize task performance. To encourage exploration in the reward space and avoid suboptimal local minima, MORSE introduces stochasticity into the shaping process, injecting noise guided by task performance and the prediction error of a fixed, randomly initialized neural network. Experimental results in MuJoCo and Isaac Sim environments show that MORSE effectively balances multiple objectives across various robotic tasks, achieving task performance comparable to those obtained with manually tuned reward functions.
Abstract:Household tidying is an important application area, yet current benchmarks neither model user preferences nor support mobility, and they generalize poorly, making it hard to comprehensively assess integrated language-to-action capabilities. To address this, we propose RoboTidy, a unified benchmark for language-guided household tidying that supports Vision-Language-Action (VLA) and Vision-Language-Navigation (VLN) training and evaluation. RoboTidy provides 500 photorealistic 3D Gaussian Splatting (3DGS) household scenes (covering 500 objects and containers) with collisions, formulates tidying as an "Action (Object, Container)" list, and supplies 6.4k high-quality manipulation demonstration trajectories and 1.5k naviagtion trajectories to support both few-shot and large-scale training. We also deploy RoboTidy in the real world for object tidying, establishing an end-to-end benchmark for household tidying. RoboTidy offers a scalable platform and bridges a key gap in embodied AI by enabling holistic and realistic evaluation of language-guided robots.
Abstract:Monte Carlo Tree Search (MCTS), which leverages Upper Confidence Bound for Trees (UCTs) to balance exploration and exploitation through randomized sampling, is instrumental to solving complex planning problems. However, for multi-agent planning, MCTS is confronted with a large combinatorial action space that often grows exponentially with the number of agents. As a result, the branching factor of MCTS during tree expansion also increases exponentially, making it very difficult to efficiently explore and exploit during tree search. To this end, we propose MALinZero, a new approach to leverage low-dimensional representational structures on joint-action returns and enable efficient MCTS in complex multi-agent planning. Our solution can be viewed as projecting the joint-action returns into the low-dimensional space representable using a contextual linear bandit problem formulation. We solve the contextual linear bandit problem with convex and $μ$-smooth loss functions -- in order to place more importance on better joint actions and mitigate potential representational limitations -- and derive a linear Upper Confidence Bound applied to trees (LinUCT) to enable novel multi-agent exploration and exploitation in the low-dimensional space. We analyze the regret of MALinZero for low-dimensional reward functions and propose an $(1-\tfrac1e)$-approximation algorithm for the joint action selection by maximizing a sub-modular objective. MALinZero demonstrates state-of-the-art performance on multi-agent benchmarks such as matrix games, SMAC, and SMACv2, outperforming both model-based and model-free multi-agent reinforcement learning baselines with faster learning speed and better performance.




Abstract:Inspired by the remarkable reasoning capabilities of Deepseek-R1 in complex textual tasks, many works attempt to incentivize similar capabilities in Multimodal Large Language Models (MLLMs) by directly applying reinforcement learning (RL). However, they still struggle to activate complex reasoning. In this paper, rather than examining multimodal RL in isolation, we delve into current training pipelines and identify three crucial phenomena: 1) Effective cold start initialization is critical for enhancing MLLM reasoning. Intriguingly, we find that initializing with carefully selected text data alone can lead to performance surpassing many recent multimodal reasoning models, even before multimodal RL. 2) Standard GRPO applied to multimodal RL suffers from gradient stagnation, which degrades training stability and performance. 3) Subsequent text-only RL training, following the multimodal RL phase, further enhances multimodal reasoning. This staged training approach effectively balances perceptual grounding and cognitive reasoning development. By incorporating the above insights and addressing multimodal RL issues, we introduce ReVisual-R1, achieving a new state-of-the-art among open-source 7B MLLMs on challenging benchmarks including MathVerse, MathVision, WeMath, LogicVista, DynaMath, and challenging AIME2024 and AIME2025.
Abstract:Offline reinforcement learning (RL) offers a powerful paradigm for data-driven control. Compared to model-free approaches, offline model-based RL (MBRL) explicitly learns a world model from a static dataset and uses it as a surrogate simulator, improving data efficiency and enabling potential generalization beyond the dataset support. However, most existing offline MBRL methods follow a two-stage training procedure: first learning a world model by maximizing the likelihood of the observed transitions, then optimizing a policy to maximize its expected return under the learned model. This objective mismatch results in a world model that is not necessarily optimized for effective policy learning. Moreover, we observe that policies learned via offline MBRL often lack robustness during deployment, and small adversarial noise in the environment can lead to significant performance degradation. To address these, we propose a framework that dynamically adapts the world model alongside the policy under a unified learning objective aimed at improving robustness. At the core of our method is a maximin optimization problem, which we solve by innovatively utilizing Stackelberg learning dynamics. We provide theoretical analysis to support our design and introduce computationally efficient implementations. We benchmark our algorithm on twelve noisy D4RL MuJoCo tasks and three stochastic Tokamak Control tasks, demonstrating its state-of-the-art performance.
Abstract:Federated Learning (FL) is a decentralized model training approach that preserves data privacy but struggles with low efficiency. Quantization, a powerful training optimization technique, has been widely explored for integration into FL. However, many studies fail to consider the distinct performance attribution between particular quantization strategies, such as post-training quantization (PTQ) or quantization-aware training (QAT). As a result, existing FL quantization methods rely solely on either PTQ or QAT, optimizing for speed or accuracy while compromising the other. To efficiently accelerate FL and maintain distributed convergence accuracy across various FL settings, this paper proposes a hybrid quantitation approach combining PTQ and QAT for FL systems. We conduct case studies to validate the effectiveness of using hybrid quantization in FL. To solve the difficulty of modeling speed and accuracy caused by device and data heterogeneity, we propose a hardware-related analysis and data-distribution-related analysis to help identify the trade-off boundaries for strategy selection. Based on these, we proposed a novel framework named FedHQ to automatically adopt optimal hybrid strategy allocation for FL systems. Specifically, FedHQ develops a coarse-grained global initialization and fine-grained ML-based adjustment to ensure efficiency and robustness. Experiments show that FedHQ achieves up to 2.47x times training acceleration and up to 11.15% accuracy improvement and negligible extra overhead.
Abstract:Soft robots exhibit inherent compliance and safety, which makes them particularly suitable for applications requiring direct physical interaction with humans, such as surgical procedures. However, their nonlinear and hysteretic behavior, resulting from the properties of soft materials, presents substantial challenges for accurate modeling and control. In this study, we present a soft robotic system designed for surgical applications and propose a hysteresis-aware whole-body neural network model that accurately captures and predicts the soft robot's whole-body motion, including its hysteretic behavior. Building upon the high-precision dynamic model, we construct a highly parallel simulation environment for soft robot control and apply an on-policy reinforcement learning algorithm to efficiently train whole-body motion control strategies. Based on the trained control policy, we developed a soft robotic system for surgical applications and validated it through phantom-based laser ablation experiments in a physical environment. The results demonstrate that the hysteresis-aware modeling reduces the Mean Squared Error (MSE) by 84.95 percent compared to traditional modeling methods. The deployed control algorithm achieved a trajectory tracking error ranging from 0.126 to 0.250 mm on the real soft robot, highlighting its precision in real-world conditions. The proposed method showed strong performance in phantom-based surgical experiments and demonstrates its potential for complex scenarios, including future real-world clinical applications.
Abstract:As rapidly growing AI computational demands accelerate the need for new hardware installation and maintenance, this work explores optimal data center resource management by balancing operational efficiency with fault tolerance through strategic rack positioning considering diverse resources and locations. Traditional mixed-integer programming (MIP) approaches often struggle with scalability, while heuristic methods may result in significant sub-optimality. To address these issues, this paper presents a novel two-tier optimization framework using a high-level deep reinforcement learning (DRL) model to guide a low-level gradient-based heuristic for local search. The high-level DRL agent employs Leader Reward for optimal rack type ordering, and the low-level heuristic efficiently maps racks to positions, minimizing movement counts and ensuring fault-tolerant resource distribution. This approach allows scalability to over 100,000 positions and 100 rack types. Our method outperformed the gradient-based heuristic by 7\% on average and the MIP solver by over 30\% in objective value. It achieved a 100\% success rate versus MIP's 97.5\% (within a 20-minute limit), completing in just 2 minutes compared to MIP's 1630 minutes (i.e., almost 4 orders of magnitude improvement). Unlike the MIP solver, which showed performance variability under time constraints and high penalties, our algorithm consistently delivered stable, efficient results - an essential feature for large-scale data center management.